Search Results for author: Wenxin Chen

Found 3 papers, 0 papers with code

WLC-Net: a robust and fast deep-learning wood-leaf classification method

no code implementations29 May 2024 Hanlong Li, Pei Wang, Yuhan Wu, Jing Ren, Yuhang Gao, Lingyun Zhang, Mingtai Zhang, Wenxin Chen

Wood-leaf classification is an essential and fundamental prerequisite in the analysis and estimation of forest attributes from terrestrial laser scanning (TLS) point clouds, including critical measurements such as diameter at breast height(DBH), above-ground biomass(AGB), wood volume. To address this, we introduce the Wood-Leaf Classification Network(WLC-Net), a deep learning model derived from PointNet++, designed to differentiate between wood and leaf points within tree point clouds. WLC-Net enhances classification accuracy, completeness, and speed by incorporating linearity as an inherent feature, refining the input-output framework, and optimizing the centroid sampling technique. WLC-Net was trained and assessed using three distinct tree species datasets, comprising a total of 102 individual tree point clouds:21 Chinese ash trees, 21 willow trees, and 60 tropical trees. For comparative evaluation, five alternative methods, including PointNet++, DGCNN, Krishna Moorthy's method, LeWoS, and Sun's method, were also applied to these datasets. The classification accuracy of all six methods was quantified using three metrics:overall accuracy(OA), mean Intersection over Union(mIoU), and F1-score. Across all three datasets, WLC-Net demonstrated superior performance, achieving OA scores of 0. 9778, 0. 9712, and 0. 9508;mIoU scores of 0. 9761, 0. 9693, and 0. 9141;and F1-scores of 0. 8628, 0. 7938, and 0. 9019, respectively. The time costs of WLC-Net were also recorded to evaluate the efficiency. The average processing time was 102. 74s per million points for WLC-Net. In terms of visual inspect, accuracy evaluation and efficiency evaluation, the results suggest that WLC-Net presents a promising approach for wood-leaf classification, distinguished by its high accuracy.

Modular Action Concept Grounding in Semantic Video Prediction

no code implementations CVPR 2022 Wei Yu, Wenxin Chen, Songhenh Yin, Steve Easterbrook, Animesh Garg

Recent works in video prediction have mainly focused on passive forecasting and low-level action-conditional prediction, which sidesteps the learning of interaction between agents and objects.

Action Recognition object-detection +4

Action Concept Grounding Network for Semantically-Consistent Video Generation

no code implementations28 Sep 2020 Wei Yu, Wenxin Chen, Animesh Garg

Recent works in self-supervised video prediction have mainly focused on passive forecasting and low-level action-conditional prediction, which sidesteps the problem of semantic learning.

Action Recognition object-detection +3

Cannot find the paper you are looking for? You can Submit a new open access paper.