A clustered origin for isolated massive stars

27 Nov 2017  ·  Lucas William E., Rybak Matus, Bonnell Ian A., Gieles Mark ·

High-mass stars are commonly found in stellar clusters promoting the idea that their formation occurs due to the physical processes linked with a young stellar cluster. It has recently been reported that isolated high-mass stars are present in the Large Magellanic Cloud. Due to their low velocities it has been argued that these are high-mass stars which formed without a surrounding stellar cluster. In this paper we present an alternative explanation for the origin of these stars in which they formed in a cluster environment but are subsequently dispersed into the field as their natal cluster is tidally disrupted in a merger with a higher-mass cluster. They escape the merged cluster with relatively low velocities typical of the cluster interaction and thus of the larger scale velocity dispersion, similarly to the observed stars. $N$-body simulations of cluster mergers predict a sizeable population of low velocity ($\le$ 20 km s$^{-1}$), high-mass stars at distances of > 20 pc from the cluster. High-mass clusters in which gas poor mergers are frequent would be expected to commonly have halos of young stars, including high-mass stars, that were actually formed in a cluster environment.

PDF Abstract
No code implementations yet. Submit your code now

Categories


Astrophysics of Galaxies Solar and Stellar Astrophysics