A Correctness Result for Synthesizing Plans With Loops in Stochastic Domains

16 May 2019  ·  Laszlo Treszkai, Vaishak Belle ·

Finite-state controllers (FSCs), such as plans with loops, are powerful and compact representations of action selection widely used in robotics, video games and logistics. There has been steady progress on synthesizing FSCs in deterministic environments, but the algorithmic machinery needed for lifting such techniques to stochastic environments is not yet fully understood. While the derivation of FSCs has received some attention in the context of discounted expected reward measures, they are often solved approximately and/or without correctness guarantees. In essence, that makes it difficult to analyze fundamental concerns such as: do all paths terminate, and do the majority of paths reach a goal state? In this paper, we present new theoretical results on a generic technique for synthesizing FSCs in stochastic environments, allowing for highly granular specifications on termination and goal satisfaction.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here