A Model-Free Kullback-Leibler Divergence Filter for Anomaly Detection in Noisy Data Series

5 May 2024  ·  Ruikun Zhou, Wail Gueaieb, Davide Spinello ·

We propose a Kullback-Leibler Divergence (KLD) filter to extract anomalies within data series generated by a broad class of proximity sensors, along with the anomaly locations and their relative sizes. The technique applies to devices commonly used in engineering practice, such as those mounted on mobile robots for non-destructive inspection of hazardous or other environments that may not be directly accessible to humans. The raw data generated by this class of sensors can be challenging to analyze due to the prevalence of noise over the signal content. The proposed filter is built to detect the difference of information content between data series collected by the sensor and baseline data series. It is applicable in a model-based or model-free context. The performance of the KLD filter is validated in an industrial-norm setup and benchmarked against a peer industrially-adopted algorithm.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here