A Primal Decomposition Approach to Globally Coupled Aggregative Optimization over Networks

25 Sep 2021  ·  Yuanhanqing Huang, Jianghai Hu ·

We consider a class of multi-agent optimization problems, where each agent has a local objective function that depends on its own decision variables and the aggregate of others, and is willing to cooperate with other agents to minimize the sum of the local objectives. After associating each agent with an auxiliary variable and the related local estimates, we conduct primal decomposition to the globally coupled problem and reformulate it so that it can be solved distributedly. Based on the Douglas-Rachford method, an algorithm is proposed which ensures the exact convergence to a solution of the original problem. The proposed method enjoys desirable scalability by only requiring each agent to keep local estimates whose number grows linearly with the number of its neighbors. We illustrate our proposed algorithm by numerical simulations on a commodity distribution problem over a transport network.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here