A scoping review of transfer learning research on medical image analysis using ImageNet

27 Apr 2020  ·  Mohammad Amin Morid, Alireza Borjali, Guilherme Del Fiol ·

Objective: Employing transfer learning (TL) with convolutional neural networks (CNNs), well-trained on non-medical ImageNet dataset, has shown promising results for medical image analysis in recent years. We aimed to conduct a scoping review to identify these studies and summarize their characteristics in terms of the problem description, input, methodology, and outcome. Materials and Methods: To identify relevant studies, MEDLINE, IEEE, and ACM digital library were searched. Two investigators independently reviewed articles to determine eligibility and to extract data according to a study protocol defined a priori. Results: After screening of 8,421 articles, 102 met the inclusion criteria. Of 22 anatomical areas, eye (18%), breast (14%), and brain (12%) were the most commonly studied. Data augmentation was performed in 72% of fine-tuning TL studies versus 15% of the feature-extracting TL studies. Inception models were the most commonly used in breast related studies (50%), while VGGNet was the common in eye (44%), skin (50%) and tooth (57%) studies. AlexNet for brain (42%) and DenseNet for lung studies (38%) were the most frequently used models. Inception models were the most frequently used for studies that analyzed ultrasound (55%), endoscopy (57%), and skeletal system X-rays (57%). VGGNet was the most common for fundus (42%) and optical coherence tomography images (50%). AlexNet was the most frequent model for brain MRIs (36%) and breast X-Rays (50%). 35% of the studies compared their model with other well-trained CNN models and 33% of them provided visualization for interpretation. Discussion: This study identified the most prevalent tracks of implementation in the literature for data preparation, methodology selection and output evaluation for medical image analysis. Also, we identified several critical research gaps existing in the TL studies on medical image analysis.

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods