A semi-Lagrangian $ε$-monotone Fourier method for continuous withdrawal GMWBs under jump-diffusion with stochastic interest rate

1 Oct 2023  ·  Yaowen Lu, Duy-Minh Dang ·

We develop an efficient pricing approach for guaranteed minimum withdrawal benefits (GMWBs) with continuous withdrawals under a realistic modeling setting with jump-diffusions and stochastic interest rate. Utilizing an impulse stochastic control framework, we formulate the no-arbitrage GMWB pricing problem as a time-dependent Hamilton-Jacobi-Bellman (HJB) Quasi-Variational Inequality (QVI) having three spatial dimensions with cross derivative terms. Through a novel numerical approach built upon a combination of a semi-Lagrangian method and the Green's function of an associated linear partial integro-differential equation, we develop an $\epsilon$-monotone Fourier pricing method, where $\epsilon > 0$ is a monotonicity tolerance. Together with a provable strong comparison result for the HJB-QVI, we mathematically demonstrate convergence of the proposed scheme to the viscosity solution of the HJB-QVI as $\epsilon \to 0$. We present a comprehensive study of the impact of simultaneously considering jumps in the sub-account process and stochastic interest rate on the no-arbitrage prices and fair insurance fees of GMWBs, as well as on the holder's optimal withdrawal behaviors.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here