A weighted multilevel Monte Carlo method

6 May 2024  ·  Yu Li, Antony Ware ·

The Multilevel Monte Carlo (MLMC) method has been applied successfully in a wide range of settings since its first introduction by Giles (2008). When using only two levels, the method can be viewed as a kind of control-variate approach to reduce variance, as earlier proposed by Kebaier (2005). We introduce a generalization of the MLMC formulation by extending this control variate approach to any number of levels and deriving a recursive formula for computing the weights associated with the control variates and the optimal numbers of samples at the various levels. We also show how the generalisation can also be applied to the \emph{multi-index} MLMC method of Haji-Ali, Nobile, Tempone (2015), at the cost of solving a $(2^d-1)$-dimensional minimisation problem at each node when $d$ index dimensions are used. The comparative performance of the weighted MLMC method is illustrated in a range of numerical settings. While the addition of weights does not change the \emph{asymptotic} complexity of the method, the results show that significant efficiency improvements over the standard MLMC formulation are possible, particularly when the coarse level approximations are poorly correlated.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here