Active Sensing of Social Networks

21 Jan 2016  ·  Hoi-To Wai, Anna Scaglione, Amir Leshem ·

This paper develops an active sensing method to estimate the relative weight (or trust) agents place on their neighbors' information in a social network. The model used for the regression is based on the steady state equation in the linear DeGroot model under the influence of stubborn agents, i.e., agents whose opinions are not influenced by their neighbors. This method can be viewed as a \emph{social RADAR}, where the stubborn agents excite the system and the latter can be estimated through the reverberation observed from the analysis of the agents' opinions. The social network sensing problem can be interpreted as a blind compressed sensing problem with a sparse measurement matrix. We prove that the network structure will be revealed when a sufficient number of stubborn agents independently influence a number of ordinary (non-stubborn) agents. We investigate the scenario with a deterministic or randomized DeGroot model and propose a consistent estimator of the steady states for the latter scenario. Simulation results on synthetic and real world networks support our findings.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here