Adaptive Latent Space Tuning for Non-Stationary Distributions

8 May 2021  ·  Alexander Scheinker, Frederick Cropp, Sergio Paiagua, Daniele Filippetto ·

Powerful deep learning tools, such as convolutional neural networks (CNN), are able to learn the input-output relationships of large complicated systems directly from data. Encoder-decoder deep CNNs are able to extract features directly from images, mix them with scalar inputs within a general low-dimensional latent space, and then generate new complex 2D outputs which represent complex physical phenomenon. One important challenge faced by deep learning methods is large non-stationary systems whose characteristics change quickly with time for which re-training is not feasible. In this paper we present a method for adaptive tuning of the low-dimensional latent space of deep encoder-decoder style CNNs based on real-time feedback to quickly compensate for unknown and fast distribution shifts. We demonstrate our approach for predicting the properties of a time-varying charged particle beam in a particle accelerator whose components (accelerating electric fields and focusing magnetic fields) are also quickly changing with time.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here