Adaptive Robust Control Contraction Metrics: Transient Bounds in Adaptive Control with Unmatched Uncertainties

20 Oct 2023  ·  Samuel G. Gessow, Brett T. Lopez ·

This work presents a new sufficient condition for synthesizing nonlinear controllers that yield bounded closed-loop tracking error transients despite the presence of unmatched uncertainties that are concurrently being learned online. The approach utilizes contraction theory and addresses fundamental limitations of existing approaches by allowing the contraction metric to depend on the unknown model parameters. This allows the controller to incorporate new model estimates generated online without sacrificing its strong convergence and bounded transients guarantees. The approach is specifically designed for trajectory tracking so the approach is more broadly applicable to adaptive model predictive control as well. Simulation results on a nonlinear system with unmatched uncertainties demonstrates the approach.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here