Ambisonics Encoding For Arbitrary Microphone Arrays Incorporating Residual Channels For Binaural Reproduction

27 Feb 2024  ·  Yhonatan Gayer, Vladimir Tourbabin, Zamir Ben-Hur, Jacob Donley, Boaz Rafaely ·

In the rapidly evolving fields of virtual and augmented reality, accurate spatial audio capture and reproduction are essential. For these applications, Ambisonics has emerged as a standard format. However, existing methods for encoding Ambisonics signals from arbitrary microphone arrays face challenges, such as errors due to the irregular array configurations and limited spatial resolution resulting from a typically small number of microphones. To address these limitations and challenges, a mathematical framework for studying Ambisonics encoding is presented, highlighting the importance of incorporating the full steering function, and providing a novel measure for predicting the accuracy of encoding each Ambisonics channel from the steering functions alone. Furthermore, novel residual channels are formulated supplementing the Ambisonics channels. A simulation study for several array configurations demonstrates a reduction in binaural error for this approach.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here