An Axiomatic Theory of Provably-Fair Welfare-Centric Machine Learning

NeurIPS 2021  ·  Cyrus Cousins ·

We address an inherent difficulty in welfare-theoretic fair machine learning by proposing an equivalently axiomatically-justified alternative and studying the resulting computational and statistical learning questions. Welfare metrics quantify overall wellbeing across a population of one or more groups, and welfare-based objectives and constraints have recently been proposed to incentivize fair machine learning methods to produce satisfactory solutions that consider the diverse needs of multiple groups. Unfortunately, many machine-learning problems are more naturally cast as loss minimization tasks, rather than utility maximization, which complicates direct application of welfare-centric methods to fair machine learning. In this work, we define a complementary measure, termed malfare, measuring overall societal harm (rather than wellbeing), with axiomatic justification via the standard axioms of cardinal welfare. We then cast fair machine learning as malfare minimization over the risk values (expected losses) of each group. Surprisingly, the axioms of cardinal welfare (malfare) dictate that this is not equivalent to simply defining utility as negative loss. Building upon these concepts, we define fair-PAC (FPAC) learning, where an FPAC learner is an algorithm that learns an $\varepsilon$-$\delta$ malfare-optimal model with bounded sample complexity, for any data distribution, and for any (axiomatically justified) malfare concept. Finally, we show broad conditions under which, with appropriate modifications, standard PAC-learners may be converted to FPAC learners. This places FPAC learning on firm theoretical ground, as it yields statistical and computational efficiency guarantees for many well-studied machine-learning models, and is also practically relevant, as it democratizes fair ML by providing concrete training algorithms and rigorous generalization guarantees for these models

PDF Abstract NeurIPS 2021 PDF NeurIPS 2021 Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here