An Enhanced Dynamic Ray Tracing Architecture for Channel Prediction Based on Multipath Bidirectional Geometry and Field Extrapolation

5 May 2024  ·  Yinghe Miao, Li Yu, Yuxiang Zhang, Hongbo Xing, Jianhua Zhang ·

With the development of sixth generation (6G) networks toward digitalization and intelligentization of communications, rapid and precise channel prediction is crucial for the network potential release. Interestingly, a dynamic ray tracing (DRT) approach for channel prediction has recently been proposed, which utilizes the results of traditional RT to extrapolate the multipath geometry evolution. However, both the priori environmental data and the regularity in multipath evolution can be further utilized. In this work, an enhanced-dynamic ray tracing (E-DRT) algorithm architecture based on multipath bidirectional extrapolation has been proposed. In terms of accuracy, all available environment information is utilized to predict the birth and death processes of multipath components (MPCs) through bidirectional geometry extrapolation. In terms of efficiency, bidirectional electric field extrapolation is employed based on the evolution regularity of the MPCs' electric field. The results in a Vehicle-to-Vehicle (V2V) scenario show that E-DRT improves the accuracy of the channel prediction from 68.3% to 94.8% while reducing the runtime by 7.2% compared to DRT.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here