Analog circuits for mixed-signal neuromorphic computing architectures in 28 nm FD-SOI technology

18 Aug 2019  ·  Ning Qiao, Giacomo Indiveri ·

Developing mixed-signal analog-digital neuromorphic circuits in advanced scaled processes poses significant design challenges. We present compact and energy efficient sub-threshold analog synapse and neuron circuits, optimized for a 28 nm FD-SOI process, to implement massively parallel large-scale neuromorphic computing systems. We describe the techniques used for maximizing density with mixed-mode analog/digital synaptic weight configurations, and the methods adopted for minimizing the effect of channel leakage current, in order to implement efficient analog computation based on pA-nA small currents. We present circuit simulation results, based on a new chip that has been recently taped out, to demonstrate how the circuits can be useful for both low-frequency operation in systems that need to interact with the environment in real-time, and for high-frequency operation for fast data processing in different types of spiking neural network architectures.

PDF Abstract
No code implementations yet. Submit your code now

Categories


Emerging Technologies

Datasets


  Add Datasets introduced or used in this paper