Finite-Time Analysis of Temporal Difference Learning: Discrete-Time Linear System Perspective

22 Apr 2022  ·  Donghwan Lee, Do Wan Kim ·

TD-learning is a fundamental algorithm in the field of reinforcement learning (RL), that is employed to evaluate a given policy by estimating the corresponding value function for a Markov decision process. While significant progress has been made in the theoretical analysis of TD-learning, recent research has uncovered guarantees concerning its statistical efficiency by developing finite-time error bounds. This paper aims to contribute to the existing body of knowledge by presenting a novel finite-time analysis of tabular temporal difference (TD) learning, which makes direct and effective use of discrete-time stochastic linear system models and leverages Schur matrix properties. The proposed analysis can cover both on-policy and off-policy settings in a unified manner. By adopting this approach, we hope to offer new and straightforward templates that not only shed further light on the analysis of TD-learning and related RL algorithms but also provide valuable insights for future research in this domain.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here