Artificial neural networks in action for an automated cell-type classification of biological neural networks

Identification of different neuronal cell types is critical for understanding their contribution to brain functions. Yet, automated and reliable classification of neurons remains a challenge, primarily because of their biological complexity. Typical approaches include laborious and expensive immunohistochemical analysis while feature extraction algorithms based on cellular characteristics have recently been proposed. The former rely on molecular markers, which are often expressed in many cell types, while the latter suffer from similar issues: finding features that are distinctive for each class has proven to be equally challenging. Moreover, both approaches are time consuming and demand a lot of human intervention. In this work we establish the first, automated cell-type classification method that relies on neuronal activity rather than molecular or cellular features. We test our method on a real-world dataset comprising of raw calcium activity signals for four neuronal types. We compare the performance of three different deep learning models and demonstrate that our method can achieve automated classification of neuronal cell types with unprecedented accuracy.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods