Asynchronous stochastic approximations with asymptotically biased errors and deep multi-agent learning

22 Feb 2018  ·  Arunselvan Ramaswamy, Shalabh Bhatnagar, Daniel E. Quevedo ·

Asynchronous stochastic approximations (SAs) are an important class of model-free algorithms, tools and techniques that are popular in multi-agent and distributed control scenarios. To counter Bellman's curse of dimensionality, such algorithms are coupled with function approximations. Although the learning/ control problem becomes more tractable, function approximations affect stability and convergence. In this paper, we present verifiable sufficient conditions for stability and convergence of asynchronous SAs with biased approximation errors. The theory developed herein is used to analyze Policy Gradient methods and noisy Value Iteration schemes. Specifically, we analyze the asynchronous approximate counterparts of the policy gradient (A2PG) and value iteration (A2VI) schemes. It is shown that the stability of these algorithms is unaffected by biased approximation errors, provided they are asymptotically bounded. With respect to convergence (of A2VI and A2PG), a relationship between the limiting set and the approximation errors is established. Finally, experimental results are presented that support the theory.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here