Automated Selection of Uniform Regions for CT Image Quality Detection

13 Aug 2016  ·  Maitham D Naeemi, Adam M Alessio, Sohini Roychowdhury ·

CT images are widely used in pathology detection and follow-up treatment procedures. Accurate identification of pathological features requires diagnostic quality CT images with minimal noise and artifact variation. In this work, a novel Fourier-transform based metric for image quality (IQ) estimation is presented that correlates to additive CT image noise. In the proposed method, two windowed CT image subset regions are analyzed together to identify the extent of variation in the corresponding Fourier-domain spectrum. The two square windows are chosen such that their center pixels coincide and one window is a subset of the other. The Fourier-domain spectral difference between these two sub-sampled windows is then used to isolate spatial regions-of-interest (ROI) with low signal variation (ROI-LV) and high signal variation (ROI-HV), respectively. Finally, the spatial variance ($var$), standard deviation ($std$), coefficient of variance ($cov$) and the fraction of abdominal ROI pixels in ROI-LV ($\nu'(q)$), are analyzed with respect to CT image noise. For the phantom CT images, $var$ and $std$ correlate to CT image noise ($|r|>0.76$ ($p\ll0.001$)), though not as well as $\nu'(q)$ ($r=0.96$ ($p\ll0.001$)). However, for the combined phantom and patient CT images, $var$ and $std$ do not correlate well with CT image noise ($|r|<0.46$ ($p\ll0.001$)) as compared to $\nu'(q)$ ($r=0.95$ ($p\ll0.001$)). Thus, the proposed method and the metric, $\nu'(q)$, can be useful to quantitatively estimate CT image noise.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here