Automatic Brain Tumor Segmentation with Scale Attention Network

6 Nov 2020  ·  Yading Yuan ·

Automatic segmentation of brain tumors is an essential but challenging step for extracting quantitative imaging biomarkers for accurate tumor detection, diagnosis, prognosis, treatment planning and assessment. Multimodal Brain Tumor Segmentation Challenge 2020 (BraTS 2020) provides a common platform for comparing different automatic algorithms on multi-parametric Magnetic Resonance Imaging (mpMRI) in tasks of 1) Brain tumor segmentation MRI scans; 2) Prediction of patient overall survival (OS) from pre-operative MRI scans; 3) Distinction of true tumor recurrence from treatment related effects and 4) Evaluation of uncertainty measures in segmentation. We participate the image segmentation challenge by developing a fully automatic segmentation network based on encoder-decoder architecture. In order to better integrate information across different scales, we propose a dynamic scale attention mechanism that incorporates low-level details with high-level semantics from feature maps at different scales. Our framework was trained using the 369 challenge training cases provided by BraTS 2020, and achieved an average Dice Similarity Coefficient (DSC) of 0.8828, 0.8433 and 0.8177, as well as 95% Hausdorff distance (in millimeter) of 5.2176, 17.9697 and 13.4298 on 166 testing cases for whole tumor, tumor core and enhanced tumor, respectively, which ranked itself as the 3rd place among 693 registrations in the BraTS 2020 challenge.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here