Autonomous Reinforcement Learning of Multiple Interrelated Tasks

4 Jun 2019  ·  Vieri Giuliano Santucci, Gianluca Baldassarre, Emilio Cartoni ·

Autonomous multiple tasks learning is a fundamental capability to develop versatile artificial agents that can act in complex environments. In real-world scenarios, tasks may be interrelated (or "hierarchical") so that a robot has to first learn to achieve some of them to set the preconditions for learning other ones. Even though different strategies have been used in robotics to tackle the acquisition of interrelated tasks, in particular within the developmental robotics framework, autonomous learning in this kind of scenarios is still an open question. Building on previous research in the framework of intrinsically motivated open-ended learning, in this work we describe how this question can be addressed working on the level of task selection, in particular considering the multiple interrelated tasks scenario as an MDP where the system is trying to maximise its competence over all the tasks.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here