Benchmarking Explanatory Models for Inertia Forecasting using Public Data of the Nordic Area

14 Jul 2023  ·  Jemima Graham, Evelyn Heylen, Yuankai Bian, Fei Teng ·

This paper investigates the performance of a day-ahead explanatory model for inertia forecasting based on field data in the Nordic system, which achieves a 43% reduction in mean absolute percentage error (MAPE) against a state-of-the-art time-series forecast model. The generalizability of the explanatory model is verified by its consistent performance on Nordic and Great Britain datasets. Also, it appears that a long duration of training data is not required to obtain accurate results with this model, but taking a more spatially granular approach reduces the MAPE by 3.6%. Finally, two further model enhancements are studied considering the specific features in Nordic system: (i) a monthly interaction variable applied to the day-ahead national demand forecast feature, reducing the MAPE by up to 18%; and (ii) a feature based on the inertia from hydropower, although this has a negligible impact. The field dataset used for benchmarking is also made publicly available.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here