Better Representations via Adversarial Training in Pre-Training: A Theoretical Perspective

26 Jan 2024  ·  Yue Xing, Xiaofeng Lin, Qifan Song, Yi Xu, Belinda Zeng, Guang Cheng ·

Pre-training is known to generate universal representations for downstream tasks in large-scale deep learning such as large language models. Existing literature, e.g., \cite{kim2020adversarial}, empirically observe that the downstream tasks can inherit the adversarial robustness of the pre-trained model. We provide theoretical justifications for this robustness inheritance phenomenon. Our theoretical results reveal that feature purification plays an important role in connecting the adversarial robustness of the pre-trained model and the downstream tasks in two-layer neural networks. Specifically, we show that (i) with adversarial training, each hidden node tends to pick only one (or a few) feature; (ii) without adversarial training, the hidden nodes can be vulnerable to attacks. This observation is valid for both supervised pre-training and contrastive learning. With purified nodes, it turns out that clean training is enough to achieve adversarial robustness in downstream tasks.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here