Binary input reconstruction for linear systems: a performance analysis

2 Dec 2020  ·  Sophie M. Fosson ·

Recovering the digital input of a time-discrete linear system from its (noisy) output is a significant challenge in the fields of data transmission, deconvolution, channel equalization, and inverse modeling. A variety of algorithms have been developed for this purpose in the last decades, addressed to different models and performance/complexity requirements. In this paper, we implement a straightforward algorithm to reconstruct the binary input of a one-dimensional linear system with known probabilistic properties. Although suboptimal, this algorithm presents two main advantages: it works online (given the current output measurement, it decodes the current input bit) and has very low complexity. Moreover, we can theoretically analyze its performance: using results on convergence of probability measures, Markov Processes, and Iterated Random Functions we evaluate its long-time behavior in terms of mean square error.

PDF Abstract
No code implementations yet. Submit your code now

Categories


Optimization and Control Systems and Control Systems and Control