Biologically plausible single-layer networks for nonnegative independent component analysis

23 Oct 2020  ·  David Lipshutz, Cengiz Pehlevan, Dmitri B. Chklovskii ·

An important problem in neuroscience is to understand how brains extract relevant signals from mixtures of unknown sources, i.e., perform blind source separation. To model how the brain performs this task, we seek a biologically plausible single-layer neural network implementation of a blind source separation algorithm. For biological plausibility, we require the network to satisfy the following three basic properties of neuronal circuits: (i) the network operates in the online setting; (ii) synaptic learning rules are local; (iii) neuronal outputs are nonnegative. Closest is the work by Pehlevan et al. [Neural Computation, 29, 2925--2954 (2017)], which considers Nonnegative Independent Component Analysis (NICA), a special case of blind source separation that assumes the mixture is a linear combination of uncorrelated, nonnegative sources. They derive an algorithm with a biologically plausible 2-layer network implementation. In this work, we improve upon their result by deriving 2 algorithms for NICA, each with a biologically plausible single-layer network implementation. The first algorithm maps onto a network with indirect lateral connections mediated by interneurons. The second algorithm maps onto a network with direct lateral connections and multi-compartmental output neurons.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here