Category-orthogonal object features guide information processing in recurrent neural networks trained for object categorization

Recurrent neural networks (RNNs) have been shown to perform better than feedforward architectures in visual object categorization tasks, especially in challenging conditions such as cluttered images. However, little is known about the exact computational role of recurrent information flow in these conditions. Here we test RNNs trained for object categorization on the hypothesis that recurrence iteratively aids object categorization via the communication of category-orthogonal auxiliary variables (the location, orientation, and scale of the object). Using diagnostic linear readouts, we find that: (a) information about auxiliary variables increases across time in all network layers, (b) this information is indeed present in the recurrent information flow, and (c) its manipulation significantly affects task performance. These observations confirm the hypothesis that category-orthogonal auxiliary variable information is conveyed through recurrent connectivity and is used to optimize category inference in cluttered environments.

PDF Abstract NeurIPS Workshop 2021 PDF NeurIPS Workshop 2021 Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here