Centre Symmetric Quadruple Pattern: A Novel Descriptor for Facial Image Recognition and Retrieval

3 Jan 2022  ·  Soumendu Chakraborty, Satish Kumar Singh, Pavan Chakraborty ·

Facial features are defined as the local relationships that exist amongst the pixels of a facial image. Hand-crafted descriptors identify the relationships of the pixels in the local neighbourhood defined by the kernel. Kernel is a two dimensional matrix which is moved across the facial image. Distinctive information captured by the kernel with limited number of pixel achieves satisfactory recognition and retrieval accuracies on facial images taken under constrained environment (controlled variations in light, pose, expressions, and background). To achieve similar accuracies under unconstrained environment local neighbourhood has to be increased, in order to encode more pixels. Increasing local neighbourhood also increases the feature length of the descriptor. In this paper we propose a hand-crafted descriptor namely Centre Symmetric Quadruple Pattern (CSQP), which is structurally symmetric and encodes the facial asymmetry in quadruple space. The proposed descriptor efficiently encodes larger neighbourhood with optimal number of binary bits. It has been shown using average entropy, computed over feature images encoded with the proposed descriptor, that the CSQP captures more meaningful information as compared to state of the art descriptors. The retrieval and recognition accuracies of the proposed descriptor has been compared with state of the art hand-crafted descriptors (CSLBP, CSLTP, LDP, LBP, SLBP and LDGP) on bench mark databases namely; LFW, Colour-FERET, and CASIA-face-v5. Result analysis shows that the proposed descriptor performs well under controlled as well as uncontrolled variations in pose, illumination, background and expressions.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here