Chemical differentiation in a prestellar core traces non-uniform illumination

12 Jul 2016  ·  Spezzano Silvia, Bizzocchi Luca, Caselli Paola, Harju Jorma, Brünken Sandra ·

Dense cloud cores present chemical differentiation due to the different distribution of C-bearing and N-bearing molecules, the latter being less affected by freeze-out onto dust grains. In this letter we show that two C-bearing molecules, CH$_3$OH and $c$-C$_3$H$_2$, present a strikingly different (complementary) morphology while showing the same kinematics toward the prestellar core L1544. After comparing their distribution with large scale H$_2$ column density N(H$_2$) map from the Herschel satellite, we find that these two molecules trace different environmental conditions in the surrounding of L1544: the $c$-C$_3$H$_2$ distribution peaks close to the southern part of the core, where the surrounding molecular cloud has a N(H$_2$) sharp edge, while CH$_3$OH mainly traces the northern part of the core, where N(H$_2$) presents a shallower tail. We conclude that this is evidence of chemical differentiation driven by different amount of illumination from the interstellar radiation field: in the South, photochemistry maintains more C atoms in the gas phase allowing carbon chain (such as $c$-C$_3$H$_2$) production; in the North, C is mainly locked in CO and methanol traces the zone where CO starts to freeze out significantly. During the process of cloud contraction, different gas and ice compositions are thus expected to mix toward the central regions of the core, where a potential Solar-type system will form. An alternative view on carbon-chain chemistry in star-forming regions is also provided.

PDF Abstract
No code implementations yet. Submit your code now

Categories


Astrophysics of Galaxies