Closing Pandora's Box -- The deepest X-ray observations of Abell 2744 and a multi-wavelength merger picture
Abell 2744, also known as Pandora's Cluster, is a complex merging galaxy cluster. While a major merger is clear along the north-south axis, the dynamical state of the northwest subcluster has been highly uncertain. We present ultra-deep ($\approx$2.1 Ms) X-ray observations of Abell 2744 obtained with the Chandra X-ray Observatory and reinterpret the multi-wavelength picture with a suite of idealised simulations of galaxy cluster mergers. The new data reveal in unprecedented detail the disruption of cool cores in the three X-ray luminous subclusters and confirm the presence of a shock to the NW. A position-velocity clustering of the cluster member galaxies shows a clearly separated S2 component, with a $\Delta z$ implying a separation of 53 Mpc or a line-of-sight velocity of $4500\ \rm{km \ s^{-1}}$, or likely some combination of the two. While binary simulations allow NW to have undergone a gravitational slingshot after the first pericenter passage, triple merger simulations rule out this scenario, because the two mergers would have had to occur $\sim$0.5 Gyr apart, and the joint impact of the shocks from the two mergers would completely disrupt the SE and NW cool cores; they only reform after 1-2 Gyr, by which point the core separations greatly exceed observations. The scenario that best describes Abell 2744 is a head-on N-S merger $0.5-0.6$ Gyrs ago followed by a first infall of the NW subcluster. Furthermore, we note that a model with three cluster-size halos, with masses consistent with gravitational lensing constraints, nevertheless produces a lensing convergence and surface brightness lower than observed in most of the field of view, whereas the temperatures are consistent with observations. This suggests the presence of a large-scale overdensity, which contributes to the diffuse emission and total surface density without heating the densest gas.
PDF Abstract