Co-Optimizing Distributed Energy Resources in Linear Complexity under Net Energy Metering

21 Aug 2022  ·  Ahmed S. Alahmed, Lang Tong, Qing Zhao ·

The co-optimization of behind-the-meter distributed energy resources is considered for prosumers under the net energy metering tariff. The distributed energy resources considered include renewable generations, flexible demands, and battery energy storage systems. An energy management system co-optimizes the consumptions and battery storage based on locally available stochastic renewables by solving a stochastic dynamic program that maximizes the expected operation surplus. To circumvent the exponential complexity of the dynamic program solution, we propose a closed-form and linear computation complexity co-optimization algorithm based on a relaxation-projection approach to a constrained stochastic dynamic program. Sufficient conditions for optimality for the proposed solution are obtained. Numerical studies demonstrate orders of magnitude reduction of computation costs and significantly reduced optimality gap.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here