Codex Hacks HackerRank: Memorization Issues and a Framework for Code Synthesis Evaluation

6 Dec 2022  ·  Anjan Karmakar, Julian Aron Prenner, Marco D'Ambros, Romain Robbes ·

The Codex model has demonstrated extraordinary competence in synthesizing code from natural language problem descriptions. However, in order to reveal unknown failure modes and hidden biases, such large-scale models must be systematically subjected to multiple and diverse evaluation studies. In this work, we evaluate the code synthesis capabilities of the Codex model based on a set of 115 Python problem statements from a popular competitive programming portal: HackerRank. Our evaluation shows that Codex is indeed proficient in Python, solving 96% of the problems in a zero-shot setting, and 100% of the problems in a few-shot setting. However, Codex exhibits clear signs of generating memorized code based on our evaluation. This is alarming, especially since the adoption and use of such models could directly impact how code is written and produced in the foreseeable future. With this in mind, we further discuss and highlight some of the prominent risks associated with large-scale models of source code. Finally, we propose a framework for code-synthesis evaluation using variations of problem statements based on mutations.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here