Combining crowd-sourcing and deep learning to explore the meso-scale organization of shallow convection

5 Jun 2019  ·  Stephan Rasp, Hauke Schulz, Sandrine Bony, Bjorn Stevens ·

Humans excel at detecting interesting patterns in images, for example those taken from satellites. This kind of anecdotal evidence can lead to the discovery of new phenomena. However, it is often difficult to gather enough data of subjective features for significant analysis. This paper presents an example of how two tools that have recently become accessible to a wide range of researchers, crowd-sourcing and deep learning, can be combined to explore satellite imagery at scale. In particular, the focus is on the organization of shallow cumulus convection in the trade wind regions. Shallow clouds play a large role in the Earth's radiation balance yet are poorly represented in climate models. For this project four subjective patterns of organization were defined: Sugar, Flower, Fish and Gravel. On cloud labeling days at two institutes, 67 scientists screened 10,000 satellite images on a crowd-sourcing platform and classified almost 50,000 mesoscale cloud clusters. This dataset is then used as a training dataset for deep learning algorithms that make it possible to automate the pattern detection and create global climatologies of the four patterns. Analysis of the geographical distribution and large-scale environmental conditions indicates that the four patterns have some overlap with established modes of organization, such as open and closed cellular convection, but also differ in important ways. The results and dataset from this project suggests promising research questions. Further, this study illustrates that crowd-sourcing and deep learning complement each other well for the exploration of image datasets.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here