Communication-efficient Algorithm for Distributed Sparse Learning via Two-way Truncation

2 Sep 2017  ·  Jineng Ren, Jarvis Haupt ·

We propose a communicationally and computationally efficient algorithm for high-dimensional distributed sparse learning. At each iteration, local machines compute the gradient on local data and the master machine solves one shifted $l_1$ regularized minimization problem. The communication cost is reduced from constant times of the dimension number for the state-of-the-art algorithm to constant times of the sparsity number via Two-way Truncation procedure. Theoretically, we prove that the estimation error of the proposed algorithm decreases exponentially and matches that of the centralized method under mild assumptions. Extensive experiments on both simulated data and real data verify that the proposed algorithm is efficient and has performance comparable with the centralized method on solving high-dimensional sparse learning problems.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here