Comparing Models of Rapidly Rotating Relativistic Stars Constructed by Two Numerical Methods

8 Nov 1994  ·  Nikolaos Stergioulas, John L. Friedman ·

We present the first direct comparison of codes based on two different numerical methods for constructing rapidly rotating relativistic stars. A code based on the Komatsu-Eriguchi-Hachisu (KEH) method (Komatsu et al. 1989), written by Stergioulas, is compared to the Butterworth-Ipser code (BI), as modified by Friedman, Ipser and Parker. We compare models obtained by each method and evaluate the accuracy and efficiency of the two codes. The agreement is surprisingly good. A relatively large discrepancy recently reported (Eriguchi et al. 1994) is found to arise from the use of two different versions of the equation of state. We find, for a given equation of state, that equilibrium models with maximum values of mass, baryon mass, and angular momentum are (generically) all distinct and either all unstable to collapse or are all stable. Our implementation of the KEH method will be available as a public domain program for interested users.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here