Comparison analysis between standard polysomnographic data and in-ear-EEG signals: A preliminary study

Study Objectives: Polysomnography (PSG) currently serves as the benchmark for evaluating sleep disorders. Its discomfort, impracticality for home-use, and introduction of bias in sleep quality assessment necessitate the exploration of less invasive, cost-effective, and portable alternatives. One promising contender is the in-ear-EEG sensor, which offers advantages in terms of comfort, fixed electrode positions, resistance to electromagnetic interference, and user-friendliness. This study aims to establish a methodology to assess the similarity between the in-ear-EEG signal and standard PSG. Methods: We assess the agreement between the PSG and in-ear-EEG derived hypnograms. We extract features in the time- and frequency- domain from PSG and in-ear-EEG 30-second epochs. We only consider the epochs where the PSG-scorers and the in-ear-EEG-scorers were in agreement. We introduce a methodology to quantify the similarity between PSG derivations and the single-channel in-ear-EEG. The approach relies on a comparison of distributions of selected features -- extracted for each sleep stage and subject on both PSG and the in-ear-EEG signals -- via a Jensen-Shannon Divergence Feature-based Similarity Index (JSD-FSI). Results: We found a high intra-scorer variability, mainly due to the uncertainty the scorers had in evaluating the in-ear-EEG signals. We show that the similarity between PSG and in-ear-EEG signals is high (JSD-FSI: 0.61 +/- 0.06 in awake, 0.60 +/- 0.07 in NREM and 0.51 +/- 0.08 in REM), and in line with the similarity values computed independently on standard PSG-channel-combinations. Conclusions: In-ear-EEG is a valuable solution for home-based sleep monitoring, however further studies with a larger and more heterogeneous dataset are needed.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here