Concentration of Multilinear Functions of the Ising Model with Applications to Network Data

We prove near-tight concentration of measure for polynomial functions of the Ising model under high temperature. For any degree $d$, we show that a degree-$d$ polynomial of a $n$-spin Ising model exhibits exponential tails that scale as $\exp(-r^{2/d})$ at radius $r=\tilde{\Omega}_d(n^{d/2})$. Our concentration radius is optimal up to logarithmic factors for constant $d$, improving known results by polynomial factors in the number of spins. We demonstrate the efficacy of polynomial functions as statistics for testing the strength of interactions in social networks in both synthetic and real world data.

PDF Abstract NeurIPS 2017 PDF NeurIPS 2017 Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here