Confidence-Guided Learning Process for Continuous Classification of Time Series

14 Aug 2022  ·  Chenxi Sun, Moxian Song, Derun Can, Baofeng Zhang, Shenda Hong, Hongyan Li ·

In the real world, the class of a time series is usually labeled at the final time, but many applications require to classify time series at every time point. e.g. the outcome of a critical patient is only determined at the end, but he should be diagnosed at all times for timely treatment. Thus, we propose a new concept: Continuous Classification of Time Series (CCTS). It requires the model to learn data in different time stages. But the time series evolves dynamically, leading to different data distributions. When a model learns multi-distribution, it always forgets or overfits. We suggest that meaningful learning scheduling is potential due to an interesting observation: Measured by confidence, the process of model learning multiple distributions is similar to the process of human learning multiple knowledge. Thus, we propose a novel Confidence-guided method for CCTS (C3TS). It can imitate the alternating human confidence described by the Dunning-Kruger Effect. We define the objective- confidence to arrange data, and the self-confidence to control the learning duration. Experiments on four real-world datasets show that C3TS is more accurate than all baselines for CCTS.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here