Constructing Low Star Discrepancy Point Sets with Genetic Algorithms

7 Apr 2013  ·  Carola Doerr, Francois-Michel De Rainville ·

Geometric discrepancies are standard measures to quantify the irregularity of distributions. They are an important notion in numerical integration. One of the most important discrepancy notions is the so-called \emph{star discrepancy}. Roughly speaking, a point set of low star discrepancy value allows for a small approximation error in quasi-Monte Carlo integration. It is thus the most studied discrepancy notion. In this work we present a new algorithm to compute point sets of low star discrepancy. The two components of the algorithm (for the optimization and the evaluation, respectively) are based on evolutionary principles. Our algorithm clearly outperforms existing approaches. To the best of our knowledge, it is also the first algorithm which can be adapted easily to optimize inverse star discrepancies.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here