Continuous matrix product states for non-relativistic quantum fields: a lattice algorithm for inhomogeneous systems

7 Jan 2018  ·  Martin Ganahl, Guifre Vidal ·

By combining the continuous matrix product state (cMPS) representation for quantum fields in the continuum with standard optimization techniques for matrix product states (MPS) on the lattice, we obtain an approximation $|\Psi\rangle$, directly in the continuum, of the ground state of non-relativistic quantum field theories. This construction works both for translation invariant systems and in the more challenging context of inhomogeneous systems, as we demonstrate for an interacting bosonic field in a periodic potential. Given the continuum Hamiltonian $H$, we consider a sequence of discretized Hamiltonians $\{H(\epsilon_{\alpha})\}_{\alpha=1,2,\cdots,p}$ on increasingly finer lattices with lattice spacing $\epsilon_1 > \epsilon_2 > \cdots > \epsilon_p$. We first use energy minimization to optimize an MPS approximation $|\Psi(\epsilon_1)\rangle$ for the ground state of $H(\epsilon_1)$. Given the MPS $|\Psi(\epsilon_{\alpha})\rangle$ optimized for the ground state of $H(\epsilon_{\alpha})$, we use it to initialize the energy minimization for Hamiltonian $H(\epsilon_{\alpha+1})$, resulting in the optimized MPS $|\Psi(\epsilon_{\alpha+1})\rangle$. By iteration we produce an optimized MPS $|\Psi(\epsilon_{p})\rangle$ for the ground state of $H(\epsilon_p)$, from which we finally extract the cMPS approximation $|\Psi\rangle$ for the ground state of $H$. Two key ingredients of our proposal are: (i) a procedure to discretize $H$ into a lattice model where each site contains a two-dimensional vector space (spanned by vacuum $|0\rangle$ and one boson $|1\rangle$ states), and (ii) a procedure to map MPS representations from a coarser lattice to a finer lattice.

PDF Abstract

Categories


Quantum Gases