CL-MRI: Self-Supervised Contrastive Learning to Improve the Accuracy of Undersampled MRI Reconstruction

1 Jun 2023  ·  Mevan Ekanayake, Zhifeng Chen, Mehrtash Harandi, Gary Egan, Zhaolin Chen ·

In Magnetic Resonance Imaging (MRI), image acquisitions are often undersampled in the measurement domain to accelerate the scanning process, at the expense of image quality. However, image quality is a crucial factor that influences the accuracy of clinical diagnosis; hence, high-quality image reconstruction from undersampled measurements has been a key area of research. Recently, deep learning (DL) methods have emerged as the state-of-the-art for MRI reconstruction, typically involving deep neural networks to transform undersampled MRI images into high-quality MRI images through data-driven processes. Nevertheless, there is clear and significant room for improvement in undersampled DL MRI reconstruction to meet the high standards required for clinical diagnosis, in terms of eliminating aliasing artifacts and reducing image noise. In this paper, we introduce a self-supervised pretraining procedure using contrastive learning to improve the accuracy of undersampled DL MRI reconstruction. We use contrastive learning to transform the MRI image representations into a latent space that maximizes mutual information among different undersampled representations and optimizes the information content at the input of the downstream DL reconstruction models. Our experiments demonstrate improved reconstruction accuracy across a range of acceleration factors and datasets, both quantitatively and qualitatively. Furthermore, our extended experiments validate the proposed framework's robustness under adversarial conditions, such as measurement noise, different k-space sampling patterns, and pathological abnormalities, and also prove the transfer learning capabilities on MRI datasets with completely different anatomy. Additionally, we conducted experiments to visualize and analyze the properties of the proposed MRI contrastive learning latent space.

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods