Control of Grid-Forming VSCs: A Perspective of Adaptive Fast/Slow Internal Voltage Source

6 Dec 2022  ·  Heng Wu, Xiongfei Wang ·

Grid-forming (GFM) capability requirements are increasingly imposed on grid-connected voltage-source converters (VSCs). Under large grid disturbances, GFM-VSCs need to remain stable while providing GFM services. Yet, such objectives, as pointed out in this paper, inherently lead to conflicting requirements on the dynamics of internal voltage source (IVS) of GFM-VSCs, i.e., the fast IVS dynamics is needed to avoid the loss of synchronism with the grid, whereas the slow IVS dynamics is preferred for maintaining GFM capability. To tackle this challenge, an adaptive fast/slow IVS control is proposed, which switches GFM-VSC between fast and slow IVS dynamics based on system needs. The proposed method enhances the transient stability of GFM-VSC, whilst maximizing its capability of providing GFM service. Further, the approach is robust to different grid strengths and different types of grid disturbances. The experimental results verify the theoretical findings and the effectiveness of the proposed control method.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here