Controlling the Charging of Electric Vehicles with Neural Networks

16 Apr 2018  ·  Martin Pilát ·

We propose and evaluate controllers for the coordination of the charging of electric vehicles. The controllers are based on neural networks and are completely de-centralized, in the sense that the charging current is completely decided by the controller itself. One of the versions of the controllers does not require any outside communication at all. We test controllers based on two different architectures of neural networks - the feed-forward networks and the echo state networks. The networks are optimized by either an evolutionary algorithm (CMA-ES) or by a gradient-based method. The results of the different architectures and the different optimization algorithms are compared in a realistic scenario. We show that the controllers are able to charge the cars while keeping the peak consumptions almost the same as when no charging is performed. Moreover, the controllers fill the valleys of the consumption thus reducing the difference between the maximum and minimum consumption in the grid.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here