Convergence Rates of Empirical Bayes Posterior Distributions: A Variational Perspective

8 Sep 2020  ·  Fengshuo Zhang, Chao GAO ·

We study the convergence rates of empirical Bayes posterior distributions for nonparametric and high-dimensional inference. We show that as long as the hyperparameter set is discrete, the empirical Bayes posterior distribution induced by the maximum marginal likelihood estimator can be regarded as a variational approximation to a hierarchical Bayes posterior distribution. This connection between empirical Bayes and variational Bayes allows us to leverage the recent results in the variational Bayes literature, and directly obtains the convergence rates of empirical Bayes posterior distributions from a variational perspective. For a more general hyperparameter set that is not necessarily discrete, we introduce a new technique called "prior decomposition" to deal with prior distributions that can be written as convex combinations of probability measures whose supports are low-dimensional subspaces. This leads to generalized versions of the classical "prior mass and testing" conditions for the convergence rates of empirical Bayes. Our theory is applied to a number of statistical estimation problems including nonparametric density estimation and sparse linear regression.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here