A Convex Parameterization of Robust Recurrent Neural Networks

11 Apr 2020  ·  Max Revay, Ruigang Wang, Ian R. Manchester ·

Recurrent neural networks (RNNs) are a class of nonlinear dynamical systems often used to model sequence-to-sequence maps. RNNs have excellent expressive power but lack the stability or robustness guarantees that are necessary for many applications. In this paper, we formulate convex sets of RNNs with stability and robustness guarantees. The guarantees are derived using incremental quadratic constraints and can ensure global exponential stability of all solutions, and bounds on incremental $ \ell_2 $ gain (the Lipschitz constant of the learned sequence-to-sequence mapping). Using an implicit model structure, we construct a parametrization of RNNs that is jointly convex in the model parameters and stability certificate. We prove that this model structure includes all previously-proposed convex sets of stable RNNs as special cases, and also includes all stable linear dynamical systems. We illustrate the utility of the proposed model class in the context of non-linear system identification.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here