CorsNet: 3D Point Cloud Registration by Deep Neural Network

3 Feb 2020  ·  Akiyoshi Kurobe, Yusuke Sekikawa, Kohta Ishikawa, and Hideo Saito ·

Point cloud registration is a key problem for robotics and computer vision communities. This represents estimating a rigid transform which aligns one point cloud to another. Iterative closest point (ICP) is a well-known classical method for this problem, yet it generally achieves high alignment only when the source and template point cloud are mostly pre-aligned. If each point cloud is far away or contains a repeating structure, the registration often fails because of being fallen into a local minimum. Recently, inspired by PointNet, several deep learning-based methods have been developed. PointNetLK is a representative approach, which directly optimizes the distance of aggregated features using gradient method by Jacobian. In this paper, we propose a point cloud registration system based on deep learning: CorsNet. Since CorsNet concatenates the local features with the global features and regresses correspondences between point clouds, not directly pose or aggregated features, more useful information is integrated than the conventional approaches. For comparison, we also developed a novel deep learning approach (DirectNet) that directly regresses the pose between point clouds. Through our experiments, we show that CorsNet achieves higher accuracy than not only the classic ICP method, but also the recently proposed learning-based proposal PointNetLK and DirectNet, including on seen and unseen categories.

PDF
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods