Curriculum Guided Domain Adaptation in the Dark

2 Aug 2023  ·  Chowdhury Sadman Jahan, Andreas Savakis ·

Addressing the rising concerns of privacy and security, domain adaptation in the dark aims to adapt a black-box source trained model to an unlabeled target domain without access to any source data or source model parameters. The need for domain adaptation of black-box predictors becomes even more pronounced to protect intellectual property as deep learning based solutions are becoming increasingly commercialized. Current methods distill noisy predictions on the target data obtained from the source model to the target model, and/or separate clean/noisy target samples before adapting using traditional noisy label learning algorithms. However, these methods do not utilize the easy-to-hard learning nature of the clean/noisy data splits. Also, none of the existing methods are end-to-end, and require a separate fine-tuning stage and an initial warmup stage. In this work, we present Curriculum Adaptation for Black-Box (CABB) which provides a curriculum guided adaptation approach to gradually train the target model, first on target data with high confidence (clean) labels, and later on target data with noisy labels. CABB utilizes Jensen-Shannon divergence as a better criterion for clean-noisy sample separation, compared to the traditional criterion of cross entropy loss. Our method utilizes co-training of a dual-branch network to suppress error accumulation resulting from confirmation bias. The proposed approach is end-to-end trainable and does not require any extra finetuning stage, unlike existing methods. Empirical results on standard domain adaptation datasets show that CABB outperforms existing state-of-the-art black-box DA models and is comparable to white-box domain adaptation models.

PDF Abstract
No code implementations yet. Submit your code now

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods