Data-Driven Model Predictive Control with Stability and Robustness Guarantees

11 Jun 2019  ·  Julian Berberich, Johannes Köhler, Matthias A. Müller, Frank Allgöwer ·

We propose a robust data-driven model predictive control (MPC) scheme to control linear time-invariant (LTI) systems. The scheme uses an implicit model description based on behavioral systems theory and past measured trajectories. In particular, it does not require any prior identification step, but only an initially measured input-output trajectory as well as an upper bound on the order of the unknown system. First, we prove exponential stability of a nominal data-driven MPC scheme with terminal equality constraints in the case of no measurement noise. For bounded additive output measurement noise, we propose a robust modification of the scheme, including a slack variable with regularization in the cost. We prove that the application of this robust MPC scheme in a multi-step fashion leads to practical exponential stability of the closed loop w.r.t. the noise level. The presented results provide the first (theoretical) analysis of closed-loop properties, resulting from a simple, purely data-driven MPC scheme.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here