Data-driven verification and synthesis of stochastic systems via barrier certificates

19 Nov 2021  ·  Ali Salamati, Abolfazl Lavaei, Sadegh Soudjani, Majid Zamani ·

In this work, we study verification and synthesis problems for safety specifications over unknown discrete-time stochastic systems. When a model of the system is available, barrier certificates have been successfully applied for ensuring the satisfaction of safety specifications. In this work, we formulate the computation of barrier certificates as a robust convex program (RCP). Solving the acquired RCP is hard in general because the model of the system that appears in one of the constraints of the RCP is unknown. We propose a data-driven approach that replaces the uncountable number of constraints in the RCP with a finite number of constraints by taking finitely many random samples from the trajectories of the system. We thus replace the original RCP with a scenario convex program (SCP) and show how to relate their optimizers. We guarantee that the solution of the SCP is a solution of the RCP with a priori guaranteed confidence when the number of samples is larger than a pre-computed value. This provides a lower bound on the safety probability of the original unknown system together with a controller in the case of synthesis. We also discuss an extension of our verification approach to a case where the associated robust program is non-convex and show how a similar methodology can be applied. Finally, the applicability of our proposed approach is illustrated through three case studies.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here