(Debiased) Contrastive Learning Loss for Recommendation (Technical Report)

13 Dec 2023  ·  Ruoming Jin, Dong Li ·

In this paper, we perform a systemic examination of the recommendation losses, including listwise (softmax), pairwise(BPR), and pointwise (mean-squared error, MSE, and Cosine Contrastive Loss, CCL) losses through the lens of contrastive learning. We introduce and study both debiased InfoNCE and mutual information neural estimator (MINE), for the first time, under the recommendation setting. We also relate and differentiate these two losses with the BPR loss through the lower bound analysis. Furthermore, we present the debiased pointwise loss (for both MSE and CCL) and theoretically certify both iALS and EASE, two of the most popular linear models, are inherently debiased. The empirical experimental results demonstrate the effectiveness of the debiased losses and newly introduced mutual-information losses outperform the existing (biased) ones.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods