Decentralized PI-control and Anti-windup in Resource Sharing Networks

We consider control of multiple stable first-order systems which have a control coupling described by an M-matrix. These agents are subject to incremental sector-bounded nonlinearities. We show that such plants can be globally asymptotically stabilized to a unique equilibrium using fully decentralized proportional integral anti-windup-equipped controllers subject to local tuning rules. In addition, we show that when the nonlinearities correspond to the saturation function, the closed-loop asymptotically minimizes a weighted 1-norm of the agents state mismatch. The control strategy is finally compared to other state-of-the-art controllers on a numerical district heating example.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here